GTI-space: the space of generalized topological indices
نویسندگان
چکیده
منابع مشابه
GTI-Space: The Space of Generalized Topological Indices
A new extension of the generalized topological indices (GTI) approach is carried out to represent “simple” and “composite” topological indices (TIs) in an unified way. This approach defines a GTI-space from which both simple and composite TIs represent particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary and Randić connectivity indices are expressed by means of ...
متن کاملMenger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملTopological strings in generalized complex space
A two-dimensional topological sigma-model on a generalized Calabi-Yau target space X is defined. The model is constructed in Batalin-Vilkovisky formalism using only a generalized complex structure J and a pure spinor ρ on X . In the present construction the algebra of Q-transformations automatically closes off-shell, the model transparently depends only on J , the algebra of observables and cor...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملmenger probabilistic normed space is a category topological vector space
in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Chemistry
سال: 2006
ISSN: 0259-9791,1572-8897
DOI: 10.1007/s10910-006-9211-9